{ "id": "1701.04642", "version": "v1", "published": "2017-01-17T12:20:52.000Z", "updated": "2017-01-17T12:20:52.000Z", "title": "Computability of semicomputable manifolds in computable topological spaces", "authors": [ "Zvonko Iljazović", "Igor Sušić" ], "categories": [ "math.LO", "cs.LO", "math.GN" ], "abstract": "We study computable topological spaces and semicomputable and computable sets in these spaces. In particular, we investigate conditions under which semicomputable sets are computable. We prove that a semicomputable compact manifold $M$ is computable if its boundary $\\partial M$ is computable. We also show how this result combined with certain construction which compactifies a semicomputable set leads to the conclusion that some noncompact semicomputable manifolds in computable metric spaces are computable.", "revisions": [ { "version": "v1", "updated": "2017-01-17T12:20:52.000Z" } ], "analyses": { "keywords": [ "computability", "semicomputable set", "computable metric spaces", "semicomputable compact manifold", "study computable topological spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }