{ "id": "1701.04294", "version": "v1", "published": "2017-01-16T14:11:17.000Z", "updated": "2017-01-16T14:11:17.000Z", "title": "A quenched central limit theorem for biased random walks on supercritical Galton-Watson trees", "authors": [ "Adam Bowditch" ], "comment": "11 pages", "categories": [ "math.PR" ], "abstract": "In this note, we prove a quenched functional central limit theorem for a biased random walk on a supercritical Galton-Watson tree with leaves. This extends a result of Peres and Zeitouni (2008) where the case without leaves is considered. A conjecture of Ben Arous and Fribergh (2016) suggests an upper bound on the bias which we observe to be sharp.", "revisions": [ { "version": "v1", "updated": "2017-01-16T14:11:17.000Z" } ], "analyses": { "subjects": [ "60K37", "60F05", "60F17", "60J80" ], "keywords": [ "quenched central limit theorem", "biased random walk", "supercritical galton-watson tree", "quenched functional central limit theorem" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }