{ "id": "1701.04025", "version": "v1", "published": "2017-01-15T10:38:33.000Z", "updated": "2017-01-15T10:38:33.000Z", "title": "Local martingales in discrete time", "authors": [ "Vilmos Prokaj", "Johannes Ruf" ], "categories": [ "math.PR" ], "abstract": "For any discrete-time $P$-local martingale $S$ there exists a probability measure $Q \\sim P$ such that $S$ is a $Q$-martingale. A new proof for this result is provided. This proof also yields that, for any $\\varepsilon>0$, the measure $Q$ can be chosen so that ${d Q}/{d P} \\leq 1+\\varepsilon$.", "revisions": [ { "version": "v1", "updated": "2017-01-15T10:38:33.000Z" } ], "analyses": { "keywords": [ "local martingale", "discrete time", "probability measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }