{ "id": "1701.03354", "version": "v1", "published": "2017-01-12T14:40:25.000Z", "updated": "2017-01-12T14:40:25.000Z", "title": "Norm inflation for equations of KdV type with fractional dispersion", "authors": [ "Vera Mikyoung Hur" ], "categories": [ "math.AP" ], "abstract": "We demonstrate norm inflation for nonlinear nonlocal equations, which extend the Korteweg-de Vries equation to permit fractional dispersion, in the periodic and non-periodic settings. That is, an initial datum is smooth and arbitrarily small in a Sobolev space, but the solution becomes arbitrarily large in the Sobolev space after an arbitrarily short time.", "revisions": [ { "version": "v1", "updated": "2017-01-12T14:40:25.000Z" } ], "analyses": { "keywords": [ "kdv type", "sobolev space", "korteweg-de vries equation", "nonlinear nonlocal equations", "permit fractional dispersion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }