{ "id": "1701.03276", "version": "v1", "published": "2017-01-12T09:34:44.000Z", "updated": "2017-01-12T09:34:44.000Z", "title": "Generic 1-parameter pertubations of a vector field with a singular point of codimension k", "authors": [ "Arnaud Chéritat", "Chrisitane Rousseau" ], "comment": "47 pages, 23 figures", "categories": [ "math.DS", "math.CV" ], "abstract": "We describe the equivalence classes of germs of generic 1-parameter families of complex vector fields z dot = omega_epsilon(z) on C unfolding a singular point of multiplicity k+1: omega_0 = z^{k+1} + o(z^{k+1}). The equivalence is under conjugacy by holomorphic change of coordinate and parameter. We provide a description of the modulus space and (almost) unique normal forms. As a preparatory step, we present the complete bifurcation diagram of the family of vector fields z dot = z^{k+1} - epsilon, over CP1.", "revisions": [ { "version": "v1", "updated": "2017-01-12T09:34:44.000Z" } ], "analyses": { "keywords": [ "singular point", "codimension", "pertubations", "unique normal forms", "complex vector fields" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }