{ "id": "1701.02916", "version": "v1", "published": "2017-01-11T10:29:06.000Z", "updated": "2017-01-11T10:29:06.000Z", "title": "On the extension of isometries between the unit spheres of a C*-algebra and B(H)", "authors": [ "Francisco J. Fernández-Polo", "Antonio M. Peralta" ], "categories": [ "math.FA", "math.OA" ], "abstract": "Given two complex Hilbert spaces $H$ and $K$, let $S(B(H))$ and $S(B(K))$ denote the unit spheres of the C$^*$-algebras $B(H)$ and $B(K)$ of all bounded linear operators on $H$ and $K$, respectively. We prove that every surjective isometry $f: S(B(K)) \\to S(B(H))$ admits an extension to a surjective complex linear or conjugate linear isometry $T: B(K)\\to B(H)$. This provides a positive answer to Tingley's problem in the setting of $B(H)$ spaces.", "revisions": [ { "version": "v1", "updated": "2017-01-11T10:29:06.000Z" } ], "analyses": { "subjects": [ "47B49", "46A22", "46B20", "46B04", "46A16", "46E40" ], "keywords": [ "unit spheres", "complex hilbert spaces", "conjugate linear isometry", "surjective complex linear", "bounded linear operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }