{ "id": "1701.02910", "version": "v1", "published": "2017-01-11T10:06:28.000Z", "updated": "2017-01-11T10:06:28.000Z", "title": "Tractability of $\\mathbb{L}_2$-approximation in hybrid function spaces", "authors": [ "Peter Kritzer", "Helene Laimer", "Friedrich Pillichshammer" ], "categories": [ "math.NA" ], "abstract": "We consider multivariate $\\mathbb{L}_2$-approximation in reproducing kernel Hilbert spaces which are tensor products of weighted Walsh spaces and weighted Korobov spaces. We study the minimal worst-case error $e^{\\mathbb{L}_2-\\mathrm{app},\\Lambda}(N,d)$ of all algorithms that use $N$ information evaluations from the class $\\Lambda$ in the $d$-dimensional case. The two classes $\\Lambda$ considered in this paper are the class $\\Lambda^{{\\rm all}}$ consisting of all linear functionals and the class $\\Lambda^{{\\rm std}}$ consisting only of function evaluations. The focus lies on the dependence of $e^{\\mathbb{L}_2-\\mathrm{app},\\Lambda}(N,d)$ on the dimension $d$. The main results are conditions for weak, polynomial, and strong polynomial tractability.", "revisions": [ { "version": "v1", "updated": "2017-01-11T10:06:28.000Z" } ], "analyses": { "subjects": [ "41A25", "41A63", "65D15", "65Y20" ], "keywords": [ "hybrid function spaces", "approximation", "minimal worst-case error", "strong polynomial tractability", "reproducing kernel hilbert spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }