{ "id": "1701.02289", "version": "v1", "published": "2017-01-09T18:26:38.000Z", "updated": "2017-01-09T18:26:38.000Z", "title": "Lusin area integrals related to Jacobi expansions", "authors": [ "Tomasz Z. Szarek" ], "comment": "16 pages", "categories": [ "math.CA" ], "abstract": "We investigate mixed Lusin area integrals associated with Jacobi trigonometric polynomial expansions. We prove that these operators can be viewed as vector-valued Calder\\'on-Zygmund operators in the sense of the associated space of homogeneous type. Consequently, their various mapping properties, in particular on weighted $L^p$ spaces, follow from the general theory.", "revisions": [ { "version": "v1", "updated": "2017-01-09T18:26:38.000Z" } ], "analyses": { "subjects": [ "42C05", "42C10" ], "keywords": [ "jacobi expansions", "jacobi trigonometric polynomial expansions", "mixed lusin area integrals", "general theory", "vector-valued calderon-zygmund operators" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }