{ "id": "1701.02286", "version": "v1", "published": "2017-01-09T18:16:13.000Z", "updated": "2017-01-09T18:16:13.000Z", "title": "When the number of divisors is a quadratic residue", "authors": [ "Olivier Bordellès" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Let $q > 2$ be a prime number and define $\\lambda_q := \\left( \\frac{\\tau}{q} \\right)$ where $\\tau(n)$ is the number of divisors of $n$ and $\\left( \\frac{\\cdot}{q} \\right)$ is the Legendre symbol. When $\\tau(n)$ is a quadratic residue modulo $q$, then $\\left( \\lambda_q \\star \\mathbf{1} \\right) (n)$ could be close to the number of divisors of $n$. This is the aim of this work to compare the mean value of the function $\\lambda_q \\star \\mathbf{1}$ to the well known average order of $\\tau$. The proof reveals that the results depend heavily on the value of $\\left( \\frac{2}{q} \\right)$. A bound for short sums in the case $q=5$ is also given, using profound results from the theory of integer points close to certain smooth curves.", "revisions": [ { "version": "v1", "updated": "2017-01-09T18:16:13.000Z" } ], "analyses": { "subjects": [ "11N37", "11A25", "11M41" ], "keywords": [ "quadratic residue modulo", "integer points close", "mean value", "prime number", "legendre symbol" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }