{ "id": "1701.02135", "version": "v1", "published": "2017-01-09T11:11:47.000Z", "updated": "2017-01-09T11:11:47.000Z", "title": "On the bias of cubic polynomials", "authors": [ "David Kazhdan", "Tamar Ziegler" ], "categories": [ "math.NT", "math.CO" ], "abstract": "Let $V$ be a vector space over a finite field $k=\\mathbb{F} _q$ of dimension $n$. For a polynomial $P:V\\to k$ we define the bias of $P$ to be $$b_1(P)=\\frac {|\\sum _{v\\in V}\\psi (P(V))|}{q^n}$$ where $\\psi :k\\to \\mathbb{C} ^\\star$ is a non-trivial additive character. A. Bhowmick and S. Lovett proved that for any $d\\geq 1$ and $c>0$ there exists $r=r(d,c)$ such that any polynomial $P$ of degree $d$ with $b_1(P)\\geq c$ can be written as a sum $P=\\sum _{i=1}^rQ_iR_i$ where $Q_i,R_i:V\\to k$ are non constant polynomials. We show the validity of a modified version of the converse statement for the case $d=3$.", "revisions": [ { "version": "v1", "updated": "2017-01-09T11:11:47.000Z" } ], "analyses": { "keywords": [ "cubic polynomials", "non constant polynomials", "vector space", "finite field", "converse statement" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }