{ "id": "1701.02018", "version": "v1", "published": "2017-01-08T21:27:14.000Z", "updated": "2017-01-08T21:27:14.000Z", "title": "Averages of shifted convolution sums for $GL(3) \\times GL(2)$", "authors": [ "Qingfeng Sun" ], "comment": "15 pages. Comments are welcome!", "categories": [ "math.NT" ], "abstract": "Let $A_f(1,n)$ be the normalized Fourier coefficients of a $GL(3)$ Maass cusp form $f$ and let $a_g(n)$ be the normalized Fourier coefficients of a $GL(2)$ cusp form $g$. Let $\\lambda(n)$ be either $A_f(1,n)$ or the triple divisor function $d_3(n)$. It is proved that for any $\\epsilon>0$, any integer $r\\geq 1$ and $r^{5/2}X^{1/4+7\\delta/2}\\leq H\\leq X$ with $\\delta>0$, $$ \\frac{1}{H}\\sum_{h\\geq 1}W\\left(\\frac{h}{H}\\right) \\sum_{n\\geq 1}\\lambda(n)a_g(rn+h)V\\left(\\frac{n}{X}\\right)\\ll X^{1-\\delta+\\epsilon}, $$ where $V$ and $W$ are smooth compactly supported functions, and the implied constants depend only on the associated forms and $\\epsilon$.", "revisions": [ { "version": "v1", "updated": "2017-01-08T21:27:14.000Z" } ], "analyses": { "keywords": [ "shifted convolution sums", "normalized fourier coefficients", "maass cusp form", "triple divisor function", "smooth compactly supported functions" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }