{ "id": "1701.01950", "version": "v1", "published": "2017-01-08T12:27:39.000Z", "updated": "2017-01-08T12:27:39.000Z", "title": "A new estimate for the constants of an inequality due to Hardy and Littlewood", "authors": [ "Antonio Gomes Nunes" ], "categories": [ "math.FA" ], "abstract": "One of the classical Hardy--Littlewood inequalities for $m$-linear forms on $\\ell _{p}$ spaces asserts that \\begin{equation*} \\left( \\sum_{j_{1},...,j_{m}=1}^{\\infty }\\left\\vert T\\left( e_{j_{1}},\\ldots ,e_{j_{m}}\\right) \\right\\vert ^{\\frac{p}{p-m}}\\right) ^{\\frac{p-m}{p}}\\leq 2^{\\frac{m-1}{2}}\\left\\Vert T\\right\\Vert \\end{equation*}% for all continuous $m$-linear forms $T:\\ell _{p}\\times \\cdots \\times \\ell _{p}\\rightarrow \\mathbb{R}$ or $\\mathbb{C}$ when $m