{ "id": "1701.01584", "version": "v1", "published": "2017-01-06T09:35:18.000Z", "updated": "2017-01-06T09:35:18.000Z", "title": "Note on the spectrum of classical and uniform exponents of Diophantine approximation", "authors": [ "Antoine Marnat" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "Using the Parametric Geometry of Numbers introduced recently by W.M. Schmidt and L. Summerer and results by D. Roy, we establish that the spectrum of the $2n$ exponents of Diophantine approximation in dimension $n\\geq3$ is a subset of $\\mathbb{R}^{2n}$ with non empty interior.", "revisions": [ { "version": "v1", "updated": "2017-01-06T09:35:18.000Z" } ], "analyses": { "subjects": [ "11J13" ], "keywords": [ "diophantine approximation", "uniform exponents", "non empty interior", "parametric geometry" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }