{ "id": "1701.00477", "version": "v1", "published": "2017-01-02T18:49:02.000Z", "updated": "2017-01-02T18:49:02.000Z", "title": "Restriction of the Fourier transform to some oscillating curves", "authors": [ "Xianghong Chen", "Dashan Fan", "Lifeng Wang" ], "comment": "17 pages", "categories": [ "math.CA" ], "abstract": "Let $\\phi$ be a smooth function on a compact interval $I$. Let $$\\gamma(t)=\\left (t,t^2,\\cdots,t^{n-1},\\phi(t)\\right).$$ In this paper, we show that $$\\left(\\int_I \\big|\\hat f(\\gamma(t))\\big|^q \\big|\\phi^{(n)}(t)\\big|^{\\frac{2}{n(n+1)}} dt\\right)^{1/q}\\le C\\|f\\|_{L^p(\\mathbb R^n)}$$ holds in the range $$1\\le p<\\frac{n^2+n+2}{n^2+n},\\quad 1\\le q<\\frac{2}{n^2+n}p'.$$ This generalizes an affine restriction theorem of Sj\\\"olin (1974) for $n=2$. Our proof relies on ideas of Sj\\\"olin (1974) and Drury (1985), and more recently Bak-Oberlin-Seeger (2008) and Stovall (2016), as well as a variation bound for smooth functions.", "revisions": [ { "version": "v1", "updated": "2017-01-02T18:49:02.000Z" } ], "analyses": { "subjects": [ "42B10", "42B99" ], "keywords": [ "fourier transform", "oscillating curves", "smooth function", "affine restriction theorem", "compact interval" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }