{ "id": "1701.00183", "version": "v1", "published": "2017-01-01T01:23:23.000Z", "updated": "2017-01-01T01:23:23.000Z", "title": "Pohozaev identity for the fractional $p-$Laplacian on $\\mathbb{R}^N$", "authors": [ "Lorenzo Brasco", "Sunra Mosconi", "Marco Squassina" ], "comment": "35 pages", "categories": [ "math.AP" ], "abstract": "By virtue of a suitable approximation argument, we prove a Pohozaev identity for nonlinear nonlocal problems on $\\mathbb{R}^N$ involving the fractional $p-$Laplacian operator. Furthermore we provide an application of the identity to show that some relevant levels of the energy functional associated with the problem coincide.", "revisions": [ { "version": "v1", "updated": "2017-01-01T01:23:23.000Z" } ], "analyses": { "subjects": [ "34K37", "35R11", "35A01" ], "keywords": [ "pohozaev identity", "fractional", "nonlinear nonlocal problems", "suitable approximation argument", "laplacian operator" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }