{ "id": "1612.09546", "version": "v1", "published": "2016-12-30T17:50:30.000Z", "updated": "2016-12-30T17:50:30.000Z", "title": "On the $X$-coordinates of Pell equations which are Tribonacci numbers", "authors": [ "Florian Luca", "Amanda Montejano", "Laszlo Szalay", "Alain Togbé" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "For an integer $d\\geq 2$ which is not a square, we show that there is at most one value of the positive integer $X$ participating in the Pell equation $X^2-dY^2=\\pm 1$ which is a Tribonacci number, with a few exceptions that we completely characterize.", "revisions": [ { "version": "v1", "updated": "2016-12-30T17:50:30.000Z" } ], "analyses": { "subjects": [ "11A25", "11B39", "11J86" ], "keywords": [ "pell equation", "tribonacci number", "coordinates" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }