{ "id": "1612.09443", "version": "v1", "published": "2016-12-30T10:16:22.000Z", "updated": "2016-12-30T10:16:22.000Z", "title": "Transversals in Latin arrays with many distinct symbols", "authors": [ "Darcy Best", "Kevin Hendrey", "Ian M. Wanless", "Tim E. Wilson", "David R. Wood" ], "categories": [ "math.CO" ], "abstract": "An array is row-Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row-Latin. A transversal in an $n\\times n$ array is a selection of $n$ different symbols from different rows and different columns. We prove that every $n \\times n$ Latin array containing at least $(2-\\sqrt{2}) n^2$ distinct symbols has a transversal. Also, every $n \\times n$ row-Latin array containing at least $\\frac14(5-\\sqrt{5})n^2$ distinct symbols has a transversal. Finally, we show by computation that every Latin array of order $7$ has a transversal, and we describe all smaller Latin arrays that have no transversal.", "revisions": [ { "version": "v1", "updated": "2016-12-30T10:16:22.000Z" } ], "analyses": { "subjects": [ "05B15" ], "keywords": [ "distinct symbols", "transversal", "smaller latin arrays", "row-latin array containing", "computation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }