{ "id": "1612.09173", "version": "v1", "published": "2016-12-29T15:29:58.000Z", "updated": "2016-12-29T15:29:58.000Z", "title": "Zeta Functions of Lattices of the Symmetric Group", "authors": [ "Tommy Hofmann" ], "journal": "Communications in Algebra Vol. 44, 2016, 2243-2255", "doi": "10.1080/00927872.2015.1044102", "categories": [ "math.RT", "math.NT" ], "abstract": "The symmetric group $\\mathfrak S_{n+1}$ of degree $n+1$ admits an $n$-dimensional irreducible $\\mathbf Q \\mathfrak S_n$-module $V$ corresponding to the hook partition $(2,1^{n-1})$. By the work of Craig and Plesken we know that there are $\\sigma(n+1)$ many isomorphism classes of $\\mathbf Z \\mathfrak S_{n+1}$-lattices which are rationally equivalent to $V$, where $\\sigma$ denotes the divisor counting function. In the present paper we explicitly compute the Solomon zeta function of these lattices. As an application we obtain the Solomon zeta function of the $\\mathbf Z \\mathfrak S_{n+1}$-lattice defined by the Specht basis.", "revisions": [ { "version": "v1", "updated": "2016-12-29T15:29:58.000Z" } ], "analyses": { "subjects": [ "20C10", "11S45" ], "keywords": [ "symmetric group", "solomon zeta function", "divisor counting function", "isomorphism classes", "hook partition" ], "tags": [ "journal article" ], "publication": { "publisher": "Taylor-Francis" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }