{ "id": "1612.08918", "version": "v1", "published": "2016-12-28T16:15:00.000Z", "updated": "2016-12-28T16:15:00.000Z", "title": "Three-dimensional lattice polytopes with two interior lattice points", "authors": [ "Gabriele Balletti", "Alexander M. Kasprzyk" ], "comment": "16 pages, 5 figures, 5 tables", "categories": [ "math.CO" ], "abstract": "We classify the three-dimensional lattice polytopes with two interior lattice points. Up to unimodular equivalence there are 22,673,449 such polytopes. This classification allows us to verify, for this case only, a conjectural upper bound for the volume of a lattice polytope with interior points, and provides strong evidence for new conjectural inequalities on the coefficients of the Ehrhart polynomial in dimension three.", "revisions": [ { "version": "v1", "updated": "2016-12-28T16:15:00.000Z" } ], "analyses": { "subjects": [ "52B20", "52B10" ], "keywords": [ "interior lattice points", "three-dimensional lattice polytopes", "conjectural upper bound", "ehrhart polynomial", "unimodular equivalence" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }