{ "id": "1612.08755", "version": "v1", "published": "2016-12-27T21:20:48.000Z", "updated": "2016-12-27T21:20:48.000Z", "title": "A C 1 Arnol'd-Liouville Theorem", "authors": [ "Marie-Claude Arnaud", "Jinxin Xue" ], "categories": [ "math.DS" ], "abstract": "In this paper, we prove a version of Arnol'd-Liouville theorem for C 1 commuting Hamiltonians. We show that the Lipschitz regularity of the foliation by invariant Lagrangian tori is crucial to determine the Dynamics on each Lagrangian torus and that the C 1 regularity of the foliation by invariant Lagrangian tori is crucial to prove the continuity of Arnol'd-Liouville coordinates. We also explore various notions of C 0 and Lipschitz integrability.", "revisions": [ { "version": "v1", "updated": "2016-12-27T21:20:48.000Z" } ], "analyses": { "keywords": [ "arnold-liouville theorem", "invariant lagrangian tori", "lagrangian torus", "lipschitz regularity", "arnold-liouville coordinates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }