{ "id": "1612.08497", "version": "v1", "published": "2016-12-27T04:12:31.000Z", "updated": "2016-12-27T04:12:31.000Z", "title": "The class of the affine line is a zero divisor in the Grothendieck ring: via K3 surfaces of degree 12", "authors": [ "Atsushi Ito", "Makoto Miura", "Shinnosuke Okawa", "Kazushi Ueda" ], "comment": "13 pages", "categories": [ "math.AG" ], "abstract": "We show that general K3 surfaces of degree 12 come in non-isomorphic Fourier-Mukai pairs $(X, Y)$ satisfying $[\\mathbb{A}^3] \\cdot ([X]-[Y]) = 0$ in the Grothendieck ring of varieties.", "revisions": [ { "version": "v1", "updated": "2016-12-27T04:12:31.000Z" } ], "analyses": { "keywords": [ "affine line", "zero divisor", "grothendieck ring", "general k3 surfaces", "non-isomorphic fourier-mukai pairs" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }