{ "id": "1612.08358", "version": "v1", "published": "2016-12-26T10:18:54.000Z", "updated": "2016-12-26T10:18:54.000Z", "title": "Tree property at double successor of singular cardinals of uncountable cofinality", "authors": [ "Mohammad Golshani", "Rahman Mohammadpour" ], "categories": [ "math.LO" ], "abstract": "Assuming the existence of a strong cardinal $\\kappa$ and a measurable cardinal above it, we force a generic extension in which $\\kappa$ is a singular strong limit cardinal of any prescribed cofinality, and such that the tree property holds at $\\kappa^{++}$.", "revisions": [ { "version": "v1", "updated": "2016-12-26T10:18:54.000Z" } ], "analyses": { "keywords": [ "singular cardinals", "uncountable cofinality", "double successor", "singular strong limit cardinal", "tree property holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }