{ "id": "1612.08306", "version": "v1", "published": "2016-12-25T23:22:14.000Z", "updated": "2016-12-25T23:22:14.000Z", "title": "On degree-colorings of multigraphs", "authors": [ "Mark K. Goldberg" ], "comment": "5 pages; 2 figures", "categories": [ "math.CO" ], "abstract": "A notion of degree-coloring is introduced; it captures some, but not all properties of standard edge-coloring. We conjecture that the smallest number of colors needed for degree-coloring of a multigraph $G$ [the degree-coloring index $\\tau(G)$] equals $\\max\\{\\Delta, \\omega\\}$, where $\\Delta$ and $\\omega$ are the maximum vertex degree in $G$ and the multigraph density, respectively. We prove that the conjecture holds iff $\\tau(G)$ is a monotone function on the set of multigraphs.", "revisions": [ { "version": "v1", "updated": "2016-12-25T23:22:14.000Z" } ], "analyses": { "keywords": [ "maximum vertex degree", "smallest number", "monotone function", "multigraph density", "conjecture holds" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }