{ "id": "1612.08195", "version": "v1", "published": "2016-12-24T15:44:54.000Z", "updated": "2016-12-24T15:44:54.000Z", "title": "Well-posedness theory for degenerate parabolic equations on Riemannian manifolds", "authors": [ "Melanie Graf", "Michael Kunzinger", "Darko Mitrovic" ], "comment": "32 pages", "categories": [ "math.AP" ], "abstract": "We consider the degenerate parabolic equation $$ \\partial_t u +\\mathrm{div} {\\mathfrak f}_{\\bf x}(u)=\\mathrm{div}(\\mathrm{div} ( A_{\\bf x}(u) ) ), \\ \\ {\\bf x} \\in M, \\ \\ t\\geq 0 $$ on a smooth, compact, $d$-dimensional Riemannian manifold $(M,g)$. Here, for each $u\\in {\\mathbb R}$, ${\\bf x}\\mapsto {\\mathfrak f}_{\\bf x}(u)$ is a vector field and ${\\bf x}\\mapsto A_{\\bf x}(u)$ is a $(1,1)$-tensor field on $M$ such that $u\\mapsto \\langle A_{\\bf x}(u) {\\boldsymbol \\xi},{\\boldsymbol \\xi} \\rangle$, ${\\boldsymbol \\xi}\\in T_{\\bf x} M$, is non-decreasing with respect to $u$. The fact that the notion of divergence appearing in the equation depends on the metric $g$ requires revisiting the standard entropy admissibility concept. We derive it under an additional geometry compatibility condition and, as a corollary, we introduce the kinetic formulation of the equation on the manifold. Using this concept, we prove well-posedness of the corresponding Cauchy problem.", "revisions": [ { "version": "v1", "updated": "2016-12-24T15:44:54.000Z" } ], "analyses": { "subjects": [ "35K65", "42B37", "76S99" ], "keywords": [ "degenerate parabolic equation", "well-posedness theory", "additional geometry compatibility condition", "standard entropy admissibility concept", "dimensional riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }