{ "id": "1612.08152", "version": "v1", "published": "2016-12-24T08:08:17.000Z", "updated": "2016-12-24T08:08:17.000Z", "title": "Whittaker coinvariants for $\\mathrm{GL}(m|n)$", "authors": [ "Jonathan Brundan", "Simon M. Goodwin" ], "comment": "60 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "Let $W_{m|n}$ be the (finite) $W$-algebra attached to the principal nilpotent orbit in the general linear Lie superalgebra $\\mathfrak{gl}_{m|n}(\\mathbb{C})$. In this paper we study the {\\em Whittaker coinvariants functor}, which is an exact functor from category $\\mathcal O$ for $\\mathfrak{gl}_{m|n}(\\mathbb{C})$ to a certain category of finite-dimensional modules over $W_{m|n}$. We show that this functor has properties similar to Soergel's functor $\\mathbb V$ in the setting of category $\\mathcal O$ for a semisimple Lie algebra. We also use it to compute the center of $W_{m|n}$ explicitly, and deduce some consequences for the classification of blocks of $\\mathcal O$ up to Morita/derived equivalence.", "revisions": [ { "version": "v1", "updated": "2016-12-24T08:08:17.000Z" } ], "analyses": { "keywords": [ "general linear lie superalgebra", "principal nilpotent orbit", "semisimple lie algebra", "whittaker coinvariants functor", "properties similar" ], "note": { "typesetting": "TeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable" } } }