{ "id": "1612.08124", "version": "v1", "published": "2016-12-24T01:50:25.000Z", "updated": "2016-12-24T01:50:25.000Z", "title": "Resilience of ranks of higher inclusion matrices", "authors": [ "Rafael Plaza", "Qing Xiang" ], "comment": "17 pages", "categories": [ "math.CO" ], "abstract": "Let $n \\geq r \\geq s \\geq 0$ be integers and $\\mathcal{F}$ a family of $r$-subsets of $[n]$. Let $W_{r,s}^{\\mathcal{F}}$ be the higher inclusion matrix of the subsets in ${\\mathcal F}$ vs. the $s$-subsets of $[n]$. When $\\mathcal{F}$ consists of all $r$-subsets of $[n]$, we shall simply write $W_{r,s}$ in place of $W_{r,s}^{\\mathcal{F}}$. In this paper we prove that the rank of the higher inclusion matrix $W_{r,s}$ over an arbitrary field $K$ is resilient. That is, if the size of $\\mathcal{F}$ is \"close\" to ${n \\choose r}$ then $\\mbox{rank}_{K}(W_{r,s}^{\\mathcal{F}}) = \\mbox{rank}_{K}(W_{r,s})$, where $K$ is an arbitrary field. Furthermore, we prove that the rank (over a field $K$) of the higher inclusion matrix of $r$-subspaces vs. $s$-subspaces of an $n$-dimensional vector space over $\\mathbb{F}_q$ is also resilient if ${\\rm char}(K)$ is coprime to $q$.", "revisions": [ { "version": "v1", "updated": "2016-12-24T01:50:25.000Z" } ], "analyses": { "keywords": [ "higher inclusion matrix", "arbitrary field", "resilience", "dimensional vector space", "simply write" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }