{ "id": "1612.07540", "version": "v1", "published": "2016-12-22T10:53:32.000Z", "updated": "2016-12-22T10:53:32.000Z", "title": "Planar posets have dimension at most linear in their height", "authors": [ "Gwenaƫl Joret", "Piotr Micek", "Veit Wiechert" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "We prove that every planar poset $P$ of height $h$ has dimension at most $192h + 96$. This improves on previous exponential bounds and is best possible up to a constant factor.", "revisions": [ { "version": "v1", "updated": "2016-12-22T10:53:32.000Z" } ], "analyses": { "keywords": [ "planar poset", "exponential bounds", "constant factor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }