{ "id": "1612.07187", "version": "v1", "published": "2016-12-21T15:32:11.000Z", "updated": "2016-12-21T15:32:11.000Z", "title": "On $m$-ovoids of regular near polygons", "authors": [ "John Bamberg", "Jesse Lansdown", "Melissa Lee" ], "categories": [ "math.CO" ], "abstract": "We generalise the work of Segre (1965), Cameron - Goethals - Seidel (1978), and Vanhove (2011) by showing that nontrivial $m$-ovoids of the dual polar spaces $DQ(2d, q)$, $DW(2d-1,q)$ and $DH(2d-1,q^2)$ ($d\\ge 3$) are hemisystems. We also provide a more general result that holds for regular near polygons.", "revisions": [ { "version": "v1", "updated": "2016-12-21T15:32:11.000Z" } ], "analyses": { "subjects": [ "05B25" ], "keywords": [ "dual polar spaces", "general result", "nontrivial", "generalise", "hemisystems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }