{ "id": "1612.06520", "version": "v1", "published": "2016-12-20T06:26:19.000Z", "updated": "2016-12-20T06:26:19.000Z", "title": "On the projective normality of cyclic coverings over a rational surface", "authors": [ "Lei Song" ], "comment": "comments welcome", "categories": [ "math.AG", "math.AC" ], "abstract": "Let $S$ be a rational surface with $\\dim|-K_S|\\ge 1$ and let $\\pi: X\\rightarrow S$ be a ramified cyclic covering from a smooth surface $X$ with the Kodaira dimension $\\kappa(X)\\ge 0$. We prove that for any integer $k\\ge 3$ and ample divisor $A$ on $S$, the adjoint divisor $K_X+k\\pi^*A$ is very ample and normally generated. Similar result holds for minimal (possibly singular) coverings.", "revisions": [ { "version": "v1", "updated": "2016-12-20T06:26:19.000Z" } ], "analyses": { "keywords": [ "rational surface", "cyclic covering", "projective normality", "similar result holds", "kodaira dimension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }