{ "id": "1612.06447", "version": "v1", "published": "2016-12-19T22:34:14.000Z", "updated": "2016-12-19T22:34:14.000Z", "title": "Strict and pointwise convergence of BV functions in metric spaces", "authors": [ "Panu Lahti" ], "comment": "arXiv admin note: text overlap with arXiv:1612.06286", "categories": [ "math.MG" ], "abstract": "In the setting of a metric space $X$ equipped with a doubling measure that supports a Poincar\\'e inequality, we show that if $u_i\\to u$ strictly in $BV(X)$, i.e. if $u_i\\to u$ in $L^1(X)$ and $\\Vert Du_i\\Vert(X)\\to\\Vert Du\\Vert(X)$, then for a subsequence (not relabeled) we have $\\widetilde{u}_i(x)\\to \\widetilde{u}(x)$ for $\\mathcal H$-almost every $x\\in X\\setminus S_u$.", "revisions": [ { "version": "v1", "updated": "2016-12-19T22:34:14.000Z" } ], "analyses": { "subjects": [ "30L99", "26B30", "28A20" ], "keywords": [ "metric space", "bv functions", "pointwise convergence", "poincare inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }