{ "id": "1612.06286", "version": "v1", "published": "2016-12-19T17:40:07.000Z", "updated": "2016-12-19T17:40:07.000Z", "title": "A Federer-style characterization of sets of finite perimeter on metric spaces", "authors": [ "Panu Lahti" ], "categories": [ "math.MG" ], "abstract": "In the setting of a metric space equipped with a doubling measure that supports a Poincar\\'e inequality, we show that a set $E$ is of finite perimeter if and only if $\\mathcal H(\\partial^1 I_E)<\\infty$, that is, if and only if the codimension one Hausdorff measure of the \\emph{$1$-fine boundary} of the set's measure theoretic interior $I_E$ is finite.", "revisions": [ { "version": "v1", "updated": "2016-12-19T17:40:07.000Z" } ], "analyses": { "subjects": [ "30L99", "31E05", "26B30" ], "keywords": [ "finite perimeter", "metric space", "federer-style characterization", "sets measure theoretic interior", "fine boundary" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }