{ "id": "1612.06231", "version": "v1", "published": "2016-12-19T15:42:44.000Z", "updated": "2016-12-19T15:42:44.000Z", "title": "On traces of Fourier integral operators localized at a finite set of points", "authors": [ "P. A. Sipailo" ], "comment": "19 pages", "categories": [ "math.AP" ], "abstract": "Given a smooth embedding of manifolds $i: X \\hookrightarrow M$ and a Fourier integral operator $\\Phi$ acting on $M$, obtained by quantization of a canonical transformation, consider its trace $i^!(\\Phi)$ on $X$ (in the sense of relative theory). We discuss the situation when $i^!(\\Phi)$ has the form of a Fourier--Mellin operator and, in particular, is localized at a finite set of points.", "revisions": [ { "version": "v1", "updated": "2016-12-19T15:42:44.000Z" } ], "analyses": { "subjects": [ "58J40" ], "keywords": [ "fourier integral operator", "finite set", "fourier-mellin operator", "canonical transformation", "quantization" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }