{ "id": "1612.06021", "version": "v1", "published": "2016-12-19T01:28:08.000Z", "updated": "2016-12-19T01:28:08.000Z", "title": "On the size of graphs without repeated cycle lengths", "authors": [ "Chunhui Lai" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "In 1975, P. Erd\\\"os proposed the problem of determining the maximum number $f(n)$ of edges in a graph of $n$ vertices in which any two cycles are of different lengths. In this paper, it is proved that $$f(n)\\geq n+\\frac{107}{3}t+\\frac{7}{3}$$ for $t=1260r+169 \\,\\ (r\\geq 1)$ and $n \\geq \\frac{2119}{4}t^{2}+87978t+\\frac{15957}{4}$. Consequently, $\\lim \\inf_{n \\to \\infty} {f(n)-n \\over \\sqrt n} \\geq \\sqrt {2 + \\frac{7654}{19071}},$ which is better than the previous bounds $\\sqrt 2$ [Y. Shi, Discrete Math. 71(1988), 57-71], $\\sqrt {2.4}$ [C. Lai, Australas. J. Combin. 27(2003), 101-105]. The conjecture $\\lim_{n \\rightarrow \\infty} {f(n)-n\\over \\sqrt n}=\\sqrt {2.4}$ is not true.", "revisions": [ { "version": "v1", "updated": "2016-12-19T01:28:08.000Z" } ], "analyses": { "subjects": [ "05C38", "05C35" ], "keywords": [ "repeated cycle lengths", "maximum number", "discrete math", "conjecture" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }