{ "id": "1612.05815", "version": "v1", "published": "2016-12-17T19:51:21.000Z", "updated": "2016-12-17T19:51:21.000Z", "title": "The Duflo-Serganova functor and Grothendieck rings of Lie superalgebras", "authors": [ "Crystal Hoyt", "Shifra Reif" ], "categories": [ "math.RT" ], "abstract": "We show that the Duflo-Serganova functor on the category of finite-dimensional modules over a finite-dimensional contragredient Lie superalgebra induces a ring homomorphism on a natural quotient of the Grothendieck ring, which is isomorphic to the ring of characters. We realize this homomorphism as a certain evaluation of functions related to the supersymmetry property. We use this realization to describe the kernel and image of the homomorphism induced by the Duflo-Serganova functor.", "revisions": [ { "version": "v1", "updated": "2016-12-17T19:51:21.000Z" } ], "analyses": { "keywords": [ "duflo-serganova functor", "grothendieck ring", "finite-dimensional contragredient lie superalgebra induces", "homomorphism", "finite-dimensional modules" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }