{ "id": "1612.05090", "version": "v1", "published": "2016-12-15T14:50:50.000Z", "updated": "2016-12-15T14:50:50.000Z", "title": "Towards a Classification of Finite-Dimensional Representations of Rational Cherednik Algebras of Type D", "authors": [ "Seth Shelley-Abrahamson", "Alec Sun" ], "comment": "12 pages", "categories": [ "math.RT", "math.CO" ], "abstract": "Using a combinatorial description due to Jacon and Lecouvey of the wall crossing bijections for cyclotomic rational Cherednik algebras, we show that the irreducible representations $L_c(\\lambda^\\pm)$ of the rational Cherednik algebra $H_c(D_n, \\mathbb{C}^n)$ of type $D$ for symmetric bipartitions $\\lambda$ are infinite dimensional for all parameters $c$. In particular, all finite-dimensional irreducible representations of rational Cherednik algebras of type $D$ arise as restrictions of finite-dimensional irreducible representations of rational Cherednik algebras of type $B$", "revisions": [ { "version": "v1", "updated": "2016-12-15T14:50:50.000Z" } ], "analyses": { "keywords": [ "finite-dimensional representations", "finite-dimensional irreducible representations", "classification", "cyclotomic rational cherednik algebras", "combinatorial description" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }