{ "id": "1612.04752", "version": "v1", "published": "2016-12-14T17:56:49.000Z", "updated": "2016-12-14T17:56:49.000Z", "title": "Splitting of separatrices in a family of area-preserving maps that unfolds a fixed point at the resonance of order three", "authors": [ "Giannis Moutsinas" ], "categories": [ "math.DS" ], "abstract": "We study the exponentially small splitting of separatrices in an one parameter family of area-preserving maps that unfolds the 1:3 resonance. We show that under a certain non-degeneracy condition we can compute a Stokes constant $\\theta$ for the map. When this constant is non zero, we provide an asymptotic for the splitting of separatrices for the map.", "revisions": [ { "version": "v1", "updated": "2016-12-14T17:56:49.000Z" } ], "analyses": { "keywords": [ "area-preserving maps", "fixed point", "separatrices", "non-degeneracy condition", "stokes constant" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }