{ "id": "1612.03579", "version": "v1", "published": "2016-12-12T09:21:41.000Z", "updated": "2016-12-12T09:21:41.000Z", "title": "Enumerating Cayley (di-)graphs on dihedral groups", "authors": [ "Xueyi Huang", "Qiongxiang Huang" ], "comment": "14 pages, 0 figure", "categories": [ "math.CO" ], "abstract": "Let $p$ be an odd prime, and $D_{2p}=\\langle \\tau,\\sigma\\mid \\tau^p=\\sigma^2=e,\\sigma\\tau\\sigma=\\tau^{-1}\\rangle$ the dihedral group of order $2p$. In this paper, we provide the number of (connected) Cayley (di-)graphs on $D_{2p}$ up to isomorphism by using the P\\'{o}lya enumeration theorem. In the process, we also enumerate (connected) Cayley digraphs on $D_{2p}$ of out-degree $k$ up to isomorphism for each $k$.", "revisions": [ { "version": "v1", "updated": "2016-12-12T09:21:41.000Z" } ], "analyses": { "subjects": [ "05C25" ], "keywords": [ "dihedral group", "enumerating cayley", "odd prime", "isomorphism", "enumeration theorem" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }