{ "id": "1612.03538", "version": "v1", "published": "2016-12-12T04:02:25.000Z", "updated": "2016-12-12T04:02:25.000Z", "title": "On the signless Laplacian spectral radius of $C_{4}$-free $k$-cyclic graphs", "authors": [ "Qi Kong", "Ligong Wang" ], "comment": "7 pages,3 figures", "categories": [ "math.CO" ], "abstract": "A $k$-cyclic graph is a connected graph of order $n$ and size $n+k-1$. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all $C_{4}$-free $k$-cyclic graphs of order $n$. Furthermore, we determine the first three unicyclic, and bicyclic, $C_{4}$-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the (combinatorial) Laplacian.", "revisions": [ { "version": "v1", "updated": "2016-12-12T04:02:25.000Z" } ], "analyses": { "subjects": [ "05C50", "15A18" ], "keywords": [ "cyclic graph", "maximal signless laplacian spectral radius", "free graphs", "similar results", "corresponding extremal graph" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }