{ "id": "1612.03514", "version": "v1", "published": "2016-12-12T01:39:39.000Z", "updated": "2016-12-12T01:39:39.000Z", "title": "Upper bounds on the Q-spectral radius of book-free and/or $K_{s,t}$-free graphs", "authors": [ "Qi Kong", "Ligong Wang" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "In this paper, we prove two results about the signless Laplacian spectral radius $q(G)$ of a graph $G$ of order $n$ with maximum degree $\\Delta$. Let $B_{n}=K_{2}+\\overline{K_{n}}$ denote a book, i.e., the graph $B_{n}$ consists of $n$ triangles sharing an edge. (1) Let $1< k\\leq l< \\Delta < n$ and $G$ be a connected \\{$B_{k+1},K_{2,l+1}$\\}-free graph of order $n$ with maximum degree $\\Delta$. Then $$\\displaystyle q(G)\\leq \\frac{1}{4}[3\\Delta+k-2l+1+\\sqrt{(3\\Delta+k-2l+1)^{2}+16l(\\Delta+n-1)}.$$ with equality holds if and only if $G$ is a strongly regular graph with parameters ($\\Delta$, $k$, $l$). (2) Let $s\\geq t\\geq 3$, and let $G$ be a connected $K_{s,t}$-free graph of order $n$ $(n\\geq s+t)$. Then $$q(G)\\leq n+(s-t+1)^{1/t}n^{1-1/t}+(t-1)(n-1)^{1-3/t}+t-3.$$", "revisions": [ { "version": "v1", "updated": "2016-12-12T01:39:39.000Z" } ], "analyses": { "subjects": [ "05C50", "15A18" ], "keywords": [ "free graph", "q-spectral radius", "upper bounds", "maximum degree", "signless laplacian spectral radius" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }