{ "id": "1612.03133", "version": "v1", "published": "2016-12-09T19:13:55.000Z", "updated": "2016-12-09T19:13:55.000Z", "title": "Topological Complexity of the Klein bottle", "authors": [ "Daniel C. Cohen", "Lucile Vandembroucq" ], "categories": [ "math.AT" ], "abstract": "We show that the (normalized) topological complexity of the Klein bottle is $4$. We also show that, for any $g\\geq 2$, $TC(N_g)=4$. This completes the recent work by Dranishnikov on the topological complexity of non-orientable surfaces.", "revisions": [ { "version": "v1", "updated": "2016-12-09T19:13:55.000Z" } ], "analyses": { "keywords": [ "topological complexity", "klein bottle", "dranishnikov" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }