{ "id": "1612.02407", "version": "v1", "published": "2016-12-07T20:37:11.000Z", "updated": "2016-12-07T20:37:11.000Z", "title": "Comparison of weak and strong moments for vectors with independent coordinates", "authors": [ "Rafał Latała", "Marta Strzelecka" ], "comment": "15 pages", "categories": [ "math.PR", "math.MG" ], "abstract": "We show that for $p\\ge 1$, the $p$-th moment of suprema of linear combinations of independent centered random variables are comparable with the sum of the first moment and the weak $p$-th moment provided that $2q$-th and $q$-th integral moments of these variables are comparable for all $ q \\ge 2$. The latest condition turns out to be necessary in the i.i.d. case.", "revisions": [ { "version": "v1", "updated": "2016-12-07T20:37:11.000Z" } ], "analyses": { "subjects": [ "60E15", "46B09" ], "keywords": [ "strong moments", "independent coordinates", "th moment", "comparison", "independent centered random variables" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }