{ "id": "1612.02025", "version": "v1", "published": "2016-12-06T21:18:21.000Z", "updated": "2016-12-06T21:18:21.000Z", "title": "Lipschitz Embeddings of Metric Spaces into $c_0$", "authors": [ "Florent P. Baudier", "Robert Deville" ], "comment": "14 pages, to appear in the Proceedings of the Conference on Harmonic and Functional Analysis, Operator Theory and Applications in honor of Jean Esterle", "categories": [ "math.FA", "math.MG" ], "abstract": "Let $M$ be a separable metric space. We say that $f=(f_n):M\\to c_0$ is a good-$\\lambda$-embedding if, whenever $x,y\\in M$, $x\\ne y$ implies $d(x,y)\\le\\Vert f(x)-f(y)\\Vert$ and, for each $n$, $Lip(f_n)<\\lambda$, where $Lip(f_n)$ denotes the Lipschitz constant of $f_n$. We prove that there exists a good-$\\lambda$-embedding from $M$ into $c_0$ if and only if $M$ satisfies an internal property called $\\pi(\\lambda)$. As a consequence, we obtain that for any separable metric space $M$, there exists a good-$2$-embedding from $M$ into $c_0$. These statements slightly extend former results obtained by N. Kalton and G. Lancien, with simplified proofs.", "revisions": [ { "version": "v1", "updated": "2016-12-06T21:18:21.000Z" } ], "analyses": { "subjects": [ "46B20", "46T99" ], "keywords": [ "lipschitz embeddings", "separable metric space", "lipschitz constant", "internal property", "statements slightly extend" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }