{ "id": "1612.01759", "version": "v1", "published": "2016-12-06T11:24:26.000Z", "updated": "2016-12-06T11:24:26.000Z", "title": "Profile of solutions for nonlocal equations with critical and supercritical nonlinearities", "authors": [ "Mousomi Bhakta", "Debangana Mukherjee", "Sanjiban Santra" ], "comment": "30 pages", "categories": [ "math.AP" ], "abstract": "We study the restricted fractional laplacian problem \\begin{eqnarray*} (-\\Delta)^s u &=& u^p -\\epsilon u^q \\quad\\text{in }\\quad \\Omega,\\\\[2mm] u &\\in& H^s(\\Omega)\\cap L^{q+1}(\\Omega),\\\\[2mm] u &>&0 \\quad\\text{in }\\quad \\Omega,\\\\[2mm] u&=&0 \\quad\\text{in}\\quad \\mathbb{R}^N\\setminus\\Omega, \\end{eqnarray*} where $s\\in(0,1)$, $q>p\\geq \\frac{N+2s}{N-2s}$ and $\\epsilon>0$ is a parameter. Here $\\Omega\\subseteq\\mathbb{R}^N$ is a bounded star-shaped domain with smooth boundary and $N> 2 s$. We establish existence of a variational positive solution $u_{\\epsilon}$ and characterize the asymptotic behaviour of $u_{\\epsilon}$ as $\\epsilon\\to 0$. When $p=\\frac{N+2s}{N-2s}$, we describe how the solution $u_{\\epsilon}$ concentrates and blows up at a interior point of the domain. Furthermore, we prove the local uniqueness of solution of the above problem when $\\Omega$ is a convex symmetric domain of $\\mathbb{R}^N$ with $N>4s$ and $p=\\frac{N+2s}{N-2s}$.", "revisions": [ { "version": "v1", "updated": "2016-12-06T11:24:26.000Z" } ], "analyses": { "keywords": [ "nonlocal equations", "supercritical nonlinearities", "restricted fractional laplacian problem", "convex symmetric domain", "smooth boundary" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }