{ "id": "1612.01665", "version": "v1", "published": "2016-12-06T05:11:55.000Z", "updated": "2016-12-06T05:11:55.000Z", "title": "The first Pontrjagin classes of homotopy complex projective spaces", "authors": [ "Yasuhiko Kitada", "Maki Nagura" ], "comment": "14 pages", "categories": [ "math.GT" ], "abstract": "Let $M^{2n}$ be a closed smooth manifold homotopy equivalent to the complex projective space $\\mathbb{C}P(n)$. The purpose of this paper is to show that when $n$ is even, the difference of the first Pontrjagin classes between $M^{2n}$ and $\\mathbb{C}P(n)$ is divisible by 16.", "revisions": [ { "version": "v1", "updated": "2016-12-06T05:11:55.000Z" } ], "analyses": { "subjects": [ "57R20", "57R55", "57R67" ], "keywords": [ "first pontrjagin classes", "homotopy complex projective spaces", "closed smooth manifold homotopy equivalent" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }