{ "id": "1612.01484", "version": "v1", "published": "2016-12-05T19:15:22.000Z", "updated": "2016-12-05T19:15:22.000Z", "title": "Stability of the Chari-Loktev bases for local Weyl modules of $\\mathfrak{sl}_{r+1}[t]$", "authors": [ "B. Ravinder" ], "comment": "19 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "We prove stability of the Chari-Loktev bases with respect to the inclusions of local Weyl modules of the current algebra $\\mathfrak{sl}_{r+1}[t]$. This is conjectured in \\cite{RRV2} and proved the $r=1$ case in \\cite{RRV1}. Local Weyl modules being known to be Demazure submodules in the level one representations of the affine Lie algebra $\\widehat{\\mathfrak{sl}_{r+1}}$, we obtain, by passage to the direct limit, bases for the level one representations themselves.", "revisions": [ { "version": "v1", "updated": "2016-12-05T19:15:22.000Z" } ], "analyses": { "subjects": [ "17B67", "17B10" ], "keywords": [ "local weyl modules", "chari-loktev bases", "affine lie algebra", "direct limit", "demazure submodules" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }