{ "id": "1612.01468", "version": "v1", "published": "2016-12-05T18:45:06.000Z", "updated": "2016-12-05T18:45:06.000Z", "title": "Consecutive primes and Beatty sequences", "authors": [ "William D. Banks", "Victor Z. Guo" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "Fix irrational numbers $\\alpha,\\hat\\alpha>1$ of finite type and real numbers $\\beta,\\hat\\beta\\ge 0$, and let $B$ and $\\hat B$ be the Beatty sequences $$ B:=(\\lfloor\\alpha m+\\beta\\rfloor)_{m\\ge 1}\\quad\\text{and}\\quad\\hat B:=(\\lfloor\\hat\\alpha m+\\hat\\beta\\rfloor)_{m\\ge 1}. $$ In this note, we study the distribution of pairs $(p,p^\\sharp)$ of consecutive primes for which $p\\in B$ and $p^\\sharp\\in\\hat B$. Under a strong (but widely accepted) form of the Hardy-Littlewood conjectures, we show that $$ \\big|\\{p\\le x:p\\in B\\text{ and }p^\\sharp\\in\\hat B\\}\\big|=(\\alpha\\hat\\alpha)^{-1}\\pi(x)+O\\big(x(\\log x)^{-3/2+\\epsilon}\\big), $$ where $\\pi(x)$ is the prime counting function.", "revisions": [ { "version": "v1", "updated": "2016-12-05T18:45:06.000Z" } ], "analyses": { "subjects": [ "11N05", "11B83" ], "keywords": [ "beatty sequences", "consecutive primes", "fix irrational numbers", "finite type", "prime counting function" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }