{ "id": "1612.01184", "version": "v1", "published": "2016-12-04T21:27:58.000Z", "updated": "2016-12-04T21:27:58.000Z", "title": "Order eight non-symplectic automorphisms on elliptic K3 surfaces", "authors": [ "Dima Al Tabbaa", "Alessandra Sarti" ], "comment": "14 pages", "categories": [ "math.AG" ], "abstract": "In this paper we classify complex K3 surfaces with non-symplectic automorphism of order 8 that leaves invariant a smooth elliptic curve. We show that the rank of the Picard group is either 10, 14 or 18 and the fixed locus is the disjoint union of elliptic curves, rational curves and points, whose number does not exceed 1, 2, respectively 14. We give examples corresponding to several types of fixed locus in the classification.", "revisions": [ { "version": "v1", "updated": "2016-12-04T21:27:58.000Z" } ], "analyses": { "subjects": [ "14J28", "14J50", "14J10" ], "keywords": [ "elliptic k3 surfaces", "non-symplectic automorphism", "classify complex k3 surfaces", "fixed locus", "smooth elliptic curve" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }