{ "id": "1612.01145", "version": "v1", "published": "2016-12-04T17:16:13.000Z", "updated": "2016-12-04T17:16:13.000Z", "title": "Garling sequence spaces", "authors": [ "Ben Wallis" ], "comment": "23 pages", "categories": [ "math.FA" ], "abstract": "By generalizing a construction of Garling, for each $1\\leqslant p<\\infty$ and each normalized, nonincreasing sequence of positive numbers $w\\in c_0\\setminus\\ell_1$ we exhibit an $\\ell_p$-saturated, complementably homogeneous Banach space $g(w,p)$ related to the Lorentz sequence space $d(w,p)$. Using methods originally developed for studying $d(w,p)$, we show that $g(w,p)$ admits a unique (up to equivalence) subsymmetric basis, although when $w=(n^{-\\theta})_{n=1}^\\infty$ for some $0<\\theta<1$, it does not admit a symmetric basis. We then discuss some additional properties of $g(w,p)$ related to uniform convexity and superreflexivity.", "revisions": [ { "version": "v1", "updated": "2016-12-04T17:16:13.000Z" } ], "analyses": { "subjects": [ "46B25", "46B45", "46B04" ], "keywords": [ "garling sequence spaces", "lorentz sequence space", "subsymmetric basis", "uniform convexity", "complementably homogeneous banach space" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }