{ "id": "1612.00295", "version": "v1", "published": "2016-12-01T15:04:54.000Z", "updated": "2016-12-01T15:04:54.000Z", "title": "On the monotonicity of perimeter of convex bodies", "authors": [ "Giorgio Stefani" ], "comment": "8 pages", "categories": [ "math.MG" ], "abstract": "Let $n\\ge2$ and let $\\Phi\\colon\\mathbb{R}^n\\to[0,\\infty)$ be a positively $1$-homogeneous and convex function. Given two convex bodies $A\\subset B$ in $\\mathbb{R}^n$, the monotonicity of anisotropic $\\Phi$-perimeters holds, i.e. $P_\\Phi(A)\\le P_\\Phi(B)$. In this note, we prove a quantitative lower bound on the difference of the $\\Phi$-perimeters of $A$ and $B$ in terms of their Hausdorff distance.", "revisions": [ { "version": "v1", "updated": "2016-12-01T15:04:54.000Z" } ], "analyses": { "subjects": [ "52A20", "52A40" ], "keywords": [ "convex bodies", "monotonicity", "convex function", "perimeters holds", "quantitative lower bound" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }