{ "id": "1611.10186", "version": "v1", "published": "2016-11-30T14:48:59.000Z", "updated": "2016-11-30T14:48:59.000Z", "title": "Arithmetic functions on average over values of quadratic polynomial", "authors": [ "Nianhong Zhou" ], "categories": [ "math.NT" ], "abstract": "Let $F({\\bf x})={\\bf x}^tQ_m{\\bf x}+\\mathbf{b}^t{\\bf x}+c\\in\\mathbb{Z}[{\\bf x}]$ be a quadratic polynomial in $\\ell (\\ge 3 )$ variables ${\\bf x} =(x_{1},...,x_{\\ell})$, where $F({\\bf x})$ is positive when ${\\bf x}\\in\\mathbb{R}_{\\ge 1}^{\\ell}$, $Q_m\\in {\\rm M}_{\\ell}(\\mathbb{Z})$ is an $\\ell\\times\\ell$ matrix and its discriminant $\\det\\left(Q_m^t+Q_m\\right)\\neq 0$. This paper uses the circle method to study the following sum \\[ T(F,g;X)=\\sum_{{\\bf x}\\in [1,X]^{\\ell}\\cap\\mathbb{Z}^{\\ell}}g\\left(F({\\bf x})\\right), \\] where $g$ is an arithmetic function which satisfies proper conditions. The present paper takes the divisor function $\\tau$ and the Mangoldt function $\\Lambda$ as examples. It gives explicit asymptotic formulas for $T(F,\\tau;X)$ and $T(F,\\Lambda;X)$ with error terms. The paper finally gives some applications for the results.", "revisions": [ { "version": "v1", "updated": "2016-11-30T14:48:59.000Z" } ], "analyses": { "subjects": [ "11P55", "11L07", "11E20" ], "keywords": [ "quadratic polynomial", "arithmetic function", "explicit asymptotic formulas", "satisfies proper conditions", "circle method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }